If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-26=0
a = 8; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·8·(-26)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{13}}{2*8}=\frac{0-8\sqrt{13}}{16} =-\frac{8\sqrt{13}}{16} =-\frac{\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{13}}{2*8}=\frac{0+8\sqrt{13}}{16} =\frac{8\sqrt{13}}{16} =\frac{\sqrt{13}}{2} $
| 4a-6a-2-1=0 | | 4a-6a-2-1a=0 | | -2x+4=2(4x-3)-3(-8+5x) | | 4(6x-20)=20 | | 5+x-(14)=x-(7) | | (5+x)-14=x-7 | | 5x-4+5x=-8+10x+4 | | 4x-0.8=40 | | 2x+104=130 | | 1/3y+1=1/4 | | 3x+5-x=43 | | 3x-10=43 | | 3x-9=43 | | 2(3a+4)-3(4a-3)=2a-1 | | 4*3x+4=748 | | 2(4d+0.5)=25 | | 4z=12-8 | | 5*y/5=y | | 5*(y/5)=5y/25 | | 2.9x=162 | | 10^3-x=1 | | 2b-(1-2b)=5-3(1+b) | | 10/x-1=2/7 | | 2b-(112b)=5-3(1+b) | | 8+(-12y)+11y=4 | | -0.72x^2+0.1x^-1+1=0 | | 17-3a=5a+1=16a | | -7/6x-7=14 | | -6=1/4x-9 | | -6=14x-9 | | X=25x+12x | | Y=25x+12x |